
Manos: A Benchmarking System for RocksDB
Manuja DeSilva
Boston University

Michael Hendrick
Boston University

ABSTRACT
RocksDB [2] is an in-memory database that is built using the con-
cept of LSM(log-structured-merge) trees. Out of the box, it provides
some guarantees, such as that its default parameters are suitable
for most workloads. In addition, it also provides many knobs that
can be adjusted by the user (the developer) to optimize the database
for their particular workloads.

We will build a command line interface tool to simulate work-
loads on RocksDB. We will include the ability to tune various pa-
rameters of RocksDB and run workloads using those parameter
configurations. In addition to running these aggregated style experi-
ments, we will also provide the ability to run individual experiments
testing the affects of tuning one parameter on a dataset. Lastly, we
will run our own benchmarking experiments using the CLI tool we
built to test the guarantees cited by RocksDB, and devise our own
parameter configurations that we predict are suitable for different
types of workloads.

1 INTRODUCTION
1.1 Motivation
Unlike other databases, developers must implement functionality
within their applications themselves to utilize RocksDB, due to the
fact that RocksDB runs at the application layer itself, rather than
being on a separate database layer. Most of these other databases
can be accessed and manipulated using well-documented APIs that
don’t require expertise in computer science to understand. In addi-
tion, other databases provide a wealth of well documented APIs to
adjust various knobs to improve performance. RocksDB, in addition
to providing the ability to perform basic operations such as Gets,
Puts, and Deletes, also offers a wealth of knobs for tuning. However,
at the time of writing, these knobs require extensive amounts of
non-trivial research to implement. So, currently, developers do not
have a method of easily simulating their existing workloads to ob-
serve how RocksDB performs under certain workload proportions,
and ultimately ascertain if RocksDB can provide the performance
necessary for their applications. In addition, developers cannot
currently easily simulate workloads running on custom parameter
configurations. We aim to build a tool that can do both; that is,
provide developers with an application to easily tune RocksDB and
simulate custom workloads on RocksDB.

1.2 Problem Statement
In this project, we would like to explore how RocksDB performs
under various workloads, using different proportions of point and
range queries, inserts, updates, and deletes. In addition to perform-
ing workloads using the default RocksDB [2] parameters, we would
like to perform experiments after tuning various RocksDB param-
eters to observe the effects of performance after tuning. We aim
to test the in-memory store performance of RocksDB, as well as

provide a CLI application that developers can utilize to perform
benchmarking for their applications.

1.3 Contributions
We built a easy to use command line interface benchmarking tool
that allows developers to

• Create custom workloads
• Easily tune RocksDB parameters
• Run aggregated experiments
• Run individual experiments using predefined experiment
templates

• Create their own experiments

In addition to writing the benchmarking tool, we ran our own
experiments on various RocksDB parameters and realized that
tuning some knobs provided negligible results after some point. We
also devised our own set of configuration options for read optimized
and write optimized workloads using information gleamed from
the sum of our experiments.

2 BACKGROUND
To build our benchmarking tool, we first developed a solid under-
standing of how log structured merge trees function. Then, we
learned about the data structures utilized by RocksDB in its LSM
tree implementation, and how those data structures affect perfor-
mance. Finally, we read through the RocksDB documentation [2]
and learned about the various tunable parameters it offers, and
spent additional time browsing through the RocksDB codebase
learning how to adjust those parameters.

3 BENCHMARK
For our project, we wrote a C++ command line interface applica-
tion that instantiates a temporary database with a size of the user’s
choosing and then simulates a workload with the following oper-
ations, with the proportion of each operation relative to the total
number of operations set accordingly by the user:

• Point queries
• Range queries
• Point inserts
• Point updates
• Point deletes
• Range inserts
• Range updates
• Range deletes

Each operation returns the time spent performing the operation,
and will also return RocksDB statistics relevant to the operation.

Users can also choose to tune several RocksDB parameters from
the command line interface, or go with the defaults, and observe the
effects of the tuned parameters on the performance of the workload.
Some of these parameters are explained in detail below.



Conference’17, July 2017, Washington, DC, USA Manuja DeSilva and Michael Hendrick

3.0.1 Memtable Size. Writes in RocksDB are initially written to
a Memtable, a set of in-memory write-buffers. The size of the
memtable is important when taking scenarios such as bulk loading
data into account. If the size of the dataset is consistently larger
than the memtable size, then subsequent writes will be blocked
when all memtables are full and waiting to be flushed to disk. So,
as the size of the memtable increases, more data can be written
to memory without waiting to flush to disk, and thus leads to a
decrease in write time.

3.0.2 LRU Cache size. After a memtable is flushed to disk, reads are
served from disk if the key is no longer present in the memtable. To
improve performance, RocksDB utilizes a block cache to cache data
served from disk so that subsequent reads can derive the data from
the cache rather than going to disk. By default, RocksDB utilizes a
Least Recently Used(LRU) cache with a 8MB capacity. By increasing
the size of the LRU cache, we can increase the number of cache hits,
and decrease read times (read amplification)

3.0.3 Number of Memtables. By default, RocksDB uses 2 memta-
bles. However, when writing large amounts of data, if the memtable
size is too small and all allocated memtables are full, then writes are
stalled until at least one memtable is flushed to disk. To improve
write times, the number of memtables can be increased to account
for larger, potentially unbounded datasets, such as when utilizing
RocksDB as the backend data store for streaming applications.

3.0.4 Bloom filters. Once memtables are full they are flushed to
disk and maintained across Static Sorted Table (sst) files. When
serving reads from disk, e.g when the data item does not exist in the
Memtable or the block cache, reads may have to perform several
disk IOs to get the data item from disk. Bloom filters can prevent
these extra lookups by overlaying bit arrays over each file. Bloom
filters can tell us whether the data item might exist in an object,
or if it definitely does not exist within an object. Bloom filters are
especially useful for point queries. By increasing the size of the
bloom filter, we can decrease the amount of false positives when
performing reads, thus leading to improved read amplification.

3.0.5 Allocation of Threads. Inmost LSM based architectures, there
are two main processes, flushing and compaction. Flushing moves
data from memory to disk, and compaction merges files, processes
the deletions of keys, and removes multiple copies of the same key
if it has been overwritten. Write rates can increase if compaction
requests are issued concurrently using multiple threads.

3.0.6 Compaction style. Out of the box, RocksDB supports two
types of compaction. Level-style takes up less space, optimizing
space amplification by minimizing the number files in each com-
paction step. One compaction step will merge one file in level
𝑛 with all of its overlapping files in level 𝑛 + 1. Another type of
compaction, Universal style, requires more temporary space by
potentially merging many files and levels at once, but leads to lower
write amplification.

4 RESULTS
All experiments were performed on a dataset of 10 million tuples.

4.1 Individual Experiments

Figure 1: We observed that as we increased the size of the
memtable, the write time decreased tremendously, by sev-
eral magnitudes.

Figure 2: After increasing the size of the LRU cache, we ob-
served that subsequent reads served after a primary read
took less time to be delivered when performing Range Gets.

Figure 3: As with range gets, we observed that increasing the
LRU cache size resulted in quicker reads.



Manos: A Benchmarking System for RocksDB Conference’17, July 2017, Washington, DC, USA

Figure 4: Increasing the number of memtables had negligi-
ble effects on write time, in contrast to our hypothesis.

Figure 5: Just aswe theorized, increasing theminimumnum-
ber of tables to merge resulted in quicker reads as more
reads were served from memory rather than disk. This is a
useful parameter to tune for read and write optimized work-
loads where greater space amplification is not considered
overhead.

Figure 6: Increasing the number of bloom filter bits im-
proved read amplification dramatically; but we found that
it provided neglibible results after around 50 bits.

Figure 7: We observed that as we increased the number
of threads in the shared thread pool for flushes and com-
pactions, the write time decreased.

Figure 8: As we predicted, universal style compaction al-
lowed for quicker writes.

Figure 9: The streaming data processing software, Apache
Flink [1], uses RocksDB to store snapshots of streaming data
at regular ’checkpoints’. We observed that as we increase
the number of checkpoints, write latency increases dramat-
ically.



Conference’17, July 2017, Washington, DC, USA Manuja DeSilva and Michael Hendrick

Figure 10

Figure 11

4.2 Aggregated Experiments
Based on the observations of the effects of tuning individual parame-
ters on simulated workloads, we created our own custom parameter
profiles for both write optimized and read optimized workloads.

4.2.1 Write Optimized.

• LRU Cache Size: Default
• Memtable Size: Default
• Bloom Filter Size: Default
• # of Memtables: 5
• Compaction Style: Universal

4.2.2 Read Optimized.

• LRU Cache Size: 512MB
• Memtable Size: 256MB
• Bloom Filter Size: 100 bits
• # of Memtables: Default
• Compaction Style: Level

As shown in Figures 10, 11, and 12, the write optimized parameter
profile that we formulated indeed allowed for faster inserts and
updates, although only slightly better than the default RocksDB
parameters. For both range and point queries, the read optimized
parameter profile allowed for much faster reads than the default
RocksDB parameters, although with the cost of higher write times
when bulk loading data.

Figure 12

5 CONCLUSION
Using the CLI tool that we built, we were able quickly and efficiently
simulate workloads with a wide variety of tunable parameter con-
figurations. This enabled us to test the many promises of RocksDB,
put its through its limits, and measure the benefits of an in-memory
data store, whose underlying performance promise that was made
even more profound after tuning various parameters. Through our
observations, we were able to build our own parameter profiles for
write-optimized and read optimized workloads that we can apply to
real world datasets. In the future, we hope to dynamically add more
statistics to our benchmarks, add the ability to tune more RocksDB
parameters, and also execute more fine grained experiments on
each RocksDB parameter.

REFERENCES
[1] Apache. 2011. Flink. https://ci.apache.org/projects/flink/flink-docs-stable/ops/

state/state_backends.html
[2] Facebok. 2012. RocksDB. https://github.com/facebook/rocksdb/wiki

https://ci.apache.org/projects/flink/flink-docs-stable/ops/state/state_backends.html
https://ci.apache.org/projects/flink/flink-docs-stable/ops/state/state_backends.html
https://github.com/facebook/rocksdb/wiki

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contributions

	2 Background
	3 Benchmark
	4 Results
	4.1 Individual Experiments
	4.2 Aggregated Experiments

	5 Conclusion
	References

